NEWTON'S SECOND LAW

Draw a free-body diagram for each problem.
Show all calculations.

1. A 4.0 kg mass is acted upon by a net force of $10 \mathrm{~N}[\mathrm{R}]$. What is the acceleration of the mass?
2. During a satellite recovery, the 250 kg satellite is partially supported by a parachute that supplies an upward force of 950 N . (a) What is the net force acting on the satellite? (b) What is the acceleration of the satellite?
3. A 75 kg box is pulled across a floor with an applied force of 120 N [L] against a 75 N force of friction. (a) What is the net force acting on the box? (b) What is the acceleration of the box?
4. An horizontal force of $15 \mathrm{~N}[\mathrm{E}]$ is applied to a 2.0 kg mass, which gives it an acceleration of $3.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{E}]$ sliding along a floor (a) What is the net force acting on the mass? (b) What is the force of friction experienced by the mass?
5. A child exerts a forward push of 50.0 N on a cart. The cart weighs 300 N . (a) What is the mass of the cart? (b) What is the acceleration of the cart, (assume there is no friction)?
6. A sled of mass 30 kg coasts over the ice with an acceleration of $-0.50 \mathrm{~m} / \mathrm{s}^{2}$. What is the retarding force of friction?
7. A 6.0 kg mass is moving at a constant velocity of $15 \mathrm{~m} / \mathrm{s}[\mathrm{R}]$. (a) What force is needed to bring the mass to rest in 9.0 s ? (b) How far does the mass move while the force is stopping it?
8. A 3.0 kg mass is pulled by an 8.0 N force while experiencing a 3.5 N force of friction. What is the acceleration of the mass while it is pulled?

Physics 11

9. A vertical rope is attached to a 35.0 kg cart. The cart is given a velocity of $4.00 \mathrm{~m} / \mathrm{s}$ [UP] in 0.500 s . (a) What is the net force experienced by the cart? (b) What is the force applied to the cart by the rope?
10. An 1000 kg elevator is supported by a cable that can apply a maximum force of $1.20 \times 10^{4} \mathrm{~N}$ before it breaks. What is the greatest upward acceleration that the elevator can receive?
11. A 90.0 kg rock climber repels down a cliff at a constant velocity. (a) What is the net force acting on the rock climber? (b) What is the force of friction acting on the rock climber?
12. A construction crane lowers a load, which weighs $1.25 \times 10^{4} \mathrm{~N}$, while exerting a force of $7.0 \times 10^{3} \mathrm{~N}$ [UP] through its cable. What is the acceleration of the load?
13. A worker pushes a 65 kg crate across a floor with an applied force of $45 \mathrm{~N}[\mathrm{R}]$ with an acceleration of $0.20 \mathrm{~m} / \mathrm{s}^{2}$ [R].(a) What is the force of friction acting on the crate? (b) What is the coefficient of friction for the crate and the floor?
14. A 25.0 kg mass accelerates from rest to $40.0 \mathrm{~m} / \mathrm{s}$ in a time of 5.00 s as it falls. What is the average force of air resistance experienced by the object?
15. A 500 kg rocket experiences an upward thrust of $1.50 \times 10^{4} \mathrm{~N}$ from its engines as it leaves the ground. What is the rocket's initial acceleration? (assume air friction is initially negligible)

Answers:

1. ($2.5 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{R}]$) \quad 2. ($\left.1500 \mathrm{~N}[\mathrm{DOWN}], 6.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{DOWN}]\right) \quad 3 .\left(45 \mathrm{~N}[\mathrm{~L}], 0.60 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~L}]\right)$
2. ($6.0 \mathrm{~N}[\mathrm{E}], 9.0 \mathrm{~N}[\mathrm{~W}]$) $5 .\left(30.6 \mathrm{~kg}, 1.63 \mathrm{~m} / \mathrm{s}^{2}\right) \quad 6 .(-15 \mathrm{~N}) 7 .(10 \mathrm{~N}[\mathrm{~L}], 68 \mathrm{~m})$
3. ($1.5 \mathrm{~m} / \mathrm{s}^{2}$ [FORWARD]) 9. (280 N [UP], 623 N [UP]) $10 .\left(2.2 \mathrm{~m} / \mathrm{s}^{2}\right.$ [UP]) $\quad 11 .(0 \mathrm{~N}, 882 \mathrm{~N}$ [UP])
4. ($4.31 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{DOWN}]$) 13. ($32 \mathrm{~N}[\mathrm{~L}], 0.050$) \quad 14. ($45.0 \mathrm{~N}[\mathrm{UP}]$) $\quad 15 .\left(20.2 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{UP}]\right)$
