PHYSICS 12

NAME:

Angled Equilibrium Problems

Assignment

1. A uniform 25 kg bar, 6.0 m long, is suspended by a cord as shown. What is the tension in the cord?

The diagram below shows the top view of a door that is 2 m wide. Two forces are applied to the door as indicated in the diagram. What is the net torque on the door with respect to the hinge?

COS 30 = FIL , FIL = 8.66N, F21 = 8.66N

= 8,66 (2)

CWT = F2, (2m) CCWT = F, (1m) = 8.66 N.n

- 3. A beam of negligible mass is attached to a wall by means of a hinge. Attached to the center of the beam is a 400 N weight. A rope also helps to support this beam as shown in the diagram.
 - a) What is the tension in the rope?

5. T-O CWT= CCWT

400 (1x)=T_1(x)

b) What are the vertical and horizontal forces that the wall exerts on the beam?

 $\sum F_{\chi} = 0$

ZF,=0

FL=FR Fup=Folom

Tin = Fx Fy+Ti = Fq

4. A boom hinged at P is held stationary, as shown in the diagram below. If the tension in the supporting cord, attached three-quarters of the way along the boom from P, is 720 N, what is the weight of the boom?

5 TEB. CWT = CCWT $c_{9} + (\frac{1}{2}x) = 720(\frac{2}{4}x)$ $c_{9} + (\frac{1}{2}x) = 720(\frac{2}{4}x)$ cd7 = 1080N

= 2160N

5. A uniform beam 6.0 m long, and with a mass of 75 kg, is hinged at A. The supporting cable keeps the beam horizontal. If the maximum tension the cable can withstand is 2.4×10^3 N, what is the maximum mass of the load?

6. A uniform 350 kg beam of length 4.2 m is held stationary by a horizontal cable. The cable is attached to a point on the beam 3.0 m from the hinge. If the maximum tension the cable can withstand is 1.3×10^4 N, what maximum mass, m, can be suspended from the end of the beam?

be suspended from the end of the beam?

$$\Sigma T = 0$$
 CW $T = 0$ CM $T = 0$ CM

sliding?

$$\Sigma Fx=0$$
, $Fw=Ff$
 $\Sigma T=0$, $CwT=CCwT$
 $CGL(2-4)=FwL(4.8)$
 $66.3(2-4)=FwL(4.8)$
 $FwL=33.1M$

Enrichment

8. The diagram shows a horizontal beam of negligible mass. The wall exerts a 42.0 N horizontal force on the lever. Find the weight of the load.

9. A uniform 3.0 kg shelf of width 0.50 m is supported by a bracket, as shown in the diagram below. What force does the bracket exert on the shelf?

Answers: 1) 270 N, 2) 8.66 Nm clockwise 3a) 311 N b) V: 200 N, H: 238 N 4) 2160 N, 5) 20 kg, 6) 950 kg, 7) 37 N, 8) 16.1 N, 9) 48 N

·