\qquad

Circular Motion and Gravitation Review

1. A car is moving at a constant speed around a circular curve. Which of the following best describes this situation?

2. Which vector diagram best represents the acceleration, a, and force, F, for an object travelling along a circular path?
object

3. In a series of test runs, a car travels around the same circular track at different velocities. Which graph best shows the relationship between its centripetal acceleration, a_{c}, and its velocity, v ?
A. a_{c}

B. a_{c}

C.

D.

4. An athlete runs, at a constant speed, around a circle of radius 5.0 m in 12 s . What are the athlete's speed and acceleration?
A.

Speed	MAGNitude of Acceleration
$0.42 \mathrm{~m} / \mathrm{s}$	$0.22 \mathrm{~m} / \mathrm{s}^{2}$
$0.42 \mathrm{~m} / \mathrm{s}$	$1.4 \mathrm{~m} / \mathrm{s}^{2}$
$2.6 \mathrm{~m} / \mathrm{s}$	$0.22 \mathrm{~m} / \mathrm{s}^{2}$
$2.6 \mathrm{~m} / \mathrm{s}$	$1.4 \mathrm{~m} / \mathrm{s}^{2}$

5. A car travels at $25 \mathrm{~m} / \mathrm{s}$ along a horizontal curve of radius 450 m . What minimum coefficient of friction is necessary between its tires and the road in order for the car not to skid?
A. 0.14
B. 0.54
C. 0.72
D. 1.4
6. What is the maximum/speed a car can travel along a level circular path (as shown below) if the coefficient of friction is 0.86 ? Overhead View

A. $41 . \mathrm{m} / \mathrm{s}$
B. $8.0 \mathrm{~m} / \mathrm{s}$
C. $25 \mathrm{~m} / \mathrm{s}$
D. Depends on the mass of the car
7. A 0.20 kg object moves at a constant speed in a horizontal circular path as shown.

What is the speed of this object?
A. $2.3 \mathrm{~m} / \mathrm{s}$
B. $3.2 \mathrm{~m} / \mathrm{s}$
C. $3.4 \mathrm{~m} / \mathrm{s}$
D. $4.4 \mathrm{~m} / \mathrm{s}$
8. The diagram/shows an object of mass 3.0 kg travelling in a circular path of radius 1.2 m while suspended by a piece of string of length 1.9 m . What is the centripetal force on the mass?

A. 19 N
B. 23 N
C. 24 N
D. 29 N
9. The diagram/shows a 52 kg child riding on a Ferris wheel of radius 12 m and period 18 s . What force (normal force) does the seat exert on the child at the top and bottom of the ride?

A.

Top	Bоттом
76 N	76 N
430 N	590 N
510 N	510 N
590 N	430 N

10. A vehicle and driver travel at constant speed over the hill as shown.

Which of the following free body diagrams best describes the vehicle at this position?
A.

11. Tarzan, of mass 85 kg , holds on to a horizontal vine of length 8.0 m and jumps off a cliff. What is the tension force in the vine as Tarzan passes the lowest point of his circular path?
A. 830 N
B. 1700 N
C. 2500 N
D. 6700 N
12. Which of the following best illustrates how the gravitational field strength of a body varies with distance r from the body's centre?
A. g

B.

C.

D.

13. What is the gravitational force exerted on a 63 kg student by her 1400 kg car when their centers are 7.0 m apart?
A. $8.6 \times 10^{-11} \mathrm{~N}$
B. $1.9 \times 10^{-9} \mathrm{~N}$
C. $1.2 \times 10^{-7} \mathrm{~N}$
D. $1.8 \times 10^{-3} \mathrm{~N}$
14. A 75 kg astronaut stands on the surface of a planetoid with a mass of $5.8 \times 10^{21} \mathrm{~kg}$ and a radius of $7.3 \times 10^{5} \mathrm{~m}$. What is the gravitational field strength at the surface?
A. 0.73 N kg
B. 1.6 N kg
C. 9.8 Nkg
D. 54 N kg
15. As an object moves from x to y, the shaded area below the graph of gravitational force versus distance of separation represents

A. the gain in kinetic energy.
B. the energy released into space.
C. the work required to move the object.
D. the average force required to move the object.
16. What is the change in gravitational potential energy as a 3500
kg object is raised vertically from the surface of the earth to a height of $8.2 \times 10^{5} \mathrm{~m}$?
A. $5.5 \times 10^{7} \mathrm{~J}$
B. $2.5 \times 10^{10} \mathrm{~J}$
C. $2.8 \times 10^{10} \mathrm{~J}$
D. $1.9 \times 10^{11} \mathrm{~J}$
17. How much work must be done to lift a $4.00 \times 10^{4} \mathrm{~kg}$ object from Earth's surface to a height of $3.00 \times 10^{5} \mathrm{~m}$?
A. $1.12 \times 10^{11} \mathrm{~J}$
B. $1.18 \times 10^{11} \mathrm{~J}$
C. $2.39 \times 10^{12} \mathrm{~J}$
D. $5.32 \times 10^{13} \mathrm{~J}$
18. The equation $E_{p}=m g h$, in which g is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, can not be used for calculating the gravitational potential energy of an orbiting
Earth satellite because
A. the Earth is rotating.
B. of the influence of other astronomical bodies.
C. the Earth's gravity disappears above the atmosphere.
D. the Earth's gravitational field strength varies with distance.
19. A satellite is in a stable circular orbit around the earth. Another satellite in a stable circular orbit at a greater altitude must have
A. a smaller speed and a shorter period.
B. a smaller speed and a longer period.
C. a greater speed and a shorter period.
D. a greater speed and a longer period.
20. A satellite orbits the earth with a speed of $7.3 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What is the distance from the centre of the earth to this satellite?
A. $2.3 \times 10^{5} \mathrm{~m}$
B. $3.8 \times 10^{6} \mathrm{~m}$
C. $7.5 \times 10^{6} \mathrm{~m}$
D. $1.3 \times 10^{7} \mathrm{~m}$
21. A $2.0 \times 10^{3} \mathrm{~kg}$ satellite is in a circular orbit around the earth. The satellite has a speed of $3.6 \times 10^{3} \mathrm{~m} / \mathrm{s}$ at an orbital radius of 3.1×10^{7} m . What is the total energy of this orbiting satellite?
A. $-2.6 \times 10^{10} \mathrm{~J}$
B. $-1.3 \times 10^{10} \mathrm{~J}$
C. $-1.3 \times 10^{10} \mathrm{~J}$
D. $-3.9 \times 10^{10} \mathrm{~J}$
22. Which of the following could represent the kinetic energy, the gravitational potential energy and the total energy for an orbiting satellite in a stable circular orbit?

	Kinetic Energy	Gravitational Potential Energy	Total Energy
A.	40000 J	-80 000 J	-40000 J
B.	40000 J	40000 J	80000 J
C.	80000 J	40000 J	120000 J
D.	80000 J	-40 000 J	40000 J

23. At an altitude of $1.3 \times 10^{7} \mathrm{~m}$ above the surface of the earth an incoming meteor of mass $1.0 \times 10^{6} \mathrm{~kg}$ has a speed of $6.5 \times 10^{3} \mathrm{~m} / \mathrm{s}$. What would be the speed just before impact with the surface of the earth? Ignore air resistance.
A. $9.1 \times 10^{3} \mathrm{~m} / \mathrm{s}$
B. $1.0 \times 10^{4} \mathrm{~m} / \mathrm{s}$
C. $1.1 \times 10^{4} \mathrm{~m} / \mathrm{s}$
D. $1.7 \times 10^{4} \mathrm{~m} / \mathrm{s}$
24. A space station of radius 90 m is rotating to simulate a gravitational field.

a) What is the period of the space station's rotation so that a 70 kg astronaut will experience a normal force by the outer wall equal to 60% of his weight on the surface of the earth?
b) What would be the effect experienced by the astronaut if the space station rotated faster so that the period of rotation was decreased? Explain your predicted effect.
25. A 720 kg communication satellite is in synchronous orbit around the planet Mars. This synchronous orbit matches the period of rotation so that the satellite appears to be stationary over a position on the equator of Mars. What is the orbital radius of this satellite?

Planetary Data for Mars

[^0]26. What minimum energy is required to take a stationary $3.5 \times 10^{3} \mathrm{~kg}$ satellite from the surface of the Earth and put it into a circular orbit with a radius of $6.88 \times 10^{6} \mathrm{~m}$ and an orbital speed of $7.61 \times 10^{3} \mathrm{~m} / \mathrm{s}$? (Ignore Earth's rotation.)
27. Mars has a mass of $6.37 \times 10^{23} \mathrm{~kg}$ and a radius of $3.43 \times 10^{6} \mathrm{~m}$. What is the gravitational field strength on its surface?
28. A space shuttle is placed in a circular orbit at an altitude of $3.00 \times 10^{5} \mathrm{~m}$ above Earth's surface.

a) What is the shuttle's orbital speed?
b) The space shuttle is then moved to a higher orbit in order to capture a satellite.

The shuttle's speed in this new higher orbit will have to be
\square greater than in the lower orbit.
\square less than in the lower orbit.
\square the same as in the lower orbit.

Using principles of physics, explain your answer to b).

Answers:

1. C
2. A
3. B
4. D
5. A
6. C
7. D
8. C
9. B
10. A
11. C
12. D
13. C
14. A
15. C
16. B
17. A
18. D
19. B
20. C
21. B
22. A
23. C
24. 24.6 s, faster, less T, more Fc, feel heavier
25. $2.0 \times 10^{7} \mathrm{~m}$
26. $1.17 \times 10^{11} \mathrm{~J}$
27. 3.61 N/kg, 421 N
28. $7.73 \times 10^{3} \mathrm{~m} / \mathrm{s}$, less than..., v proportional to \sqrt{r}

[^0]: Mass: $6.42 \times 10^{23} \mathrm{~kg}$
 Period of rotation: $8.86 \times 10^{4} \mathrm{~s}$

