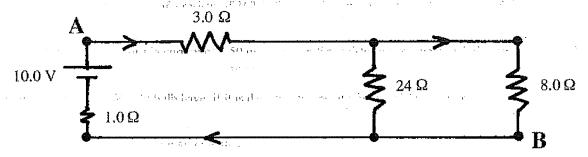
PHYSICS 12

NAME:

Electric Circuits


What is the current in a circuit if 12 C of charge pass a point in 1.5 s?

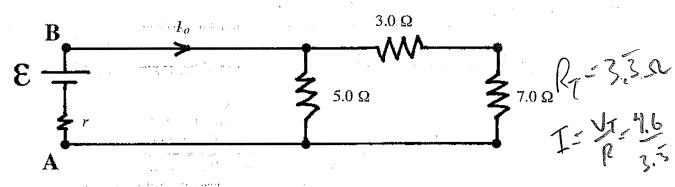
- What is the voltage between the ends of a resistor if 360 J of energy is expended as heat for every 6.0 C of charge that pass E=P.t = V. I.t = V. Q + 60. V V. Q
- through the resistor? $E = V \cdot I \cdot t = V \cdot Q + \frac{60.V}{2} \cdot V \cdot Q$ $V = \frac{3}{60.0} \cdot \frac{3}{60.0} \cdot \frac{60.V}{2}$ What is the resistance of a resistor if a current of 1.50 mA exists in the resistor when a potential difference of 45.0 V is applied to = 30 ans the ends of the resistor? VIR, $R=\frac{1}{2}$ 30k Ω
- What resistance must a 60.0 W light bulb have, if it is designed to operate from a 120.0 V source?

P=V.I=V(长) = 岩 R=岩

A battery with an internal resistance of 0.50 Ω delivers 1.50 A to a light bulb of resistance 3.0 Ω . What is the EMF of the battery?

- Three resistors are connected in series with a 24.0 V battery. If the resistors are 2.0 Ω , 4.0 Ω and 6.0 Ω , what is the potential difference across the 4.0 Ω resistor? $R = 12 \Omega$ 8.0 $V_{\mu} = 2 \Lambda$ $V_{\mu} = (2)(4) = 8 V$
- Three resistors are in parallel, and a current of 36.0 A enters the parallel network. If the resistors have resistances of 2.0 Ω , 3.0 Ω and 6.0 Ω , what current exists in the 3.0 Ω resistor? $R = 100 \text{ V}_1 = 36 \text{ V}_2$ I= x = 36 = 12A

- (a) What is the equivalent resistance of the above circuit? $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}$
 - (b) What current exists at A?

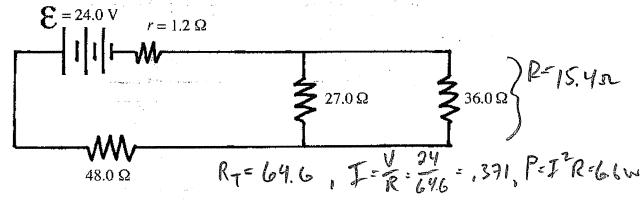

1 1 1 = 1

1.0 A

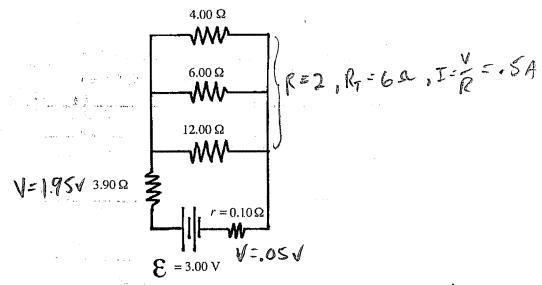
(c) What is the potential difference between the ends of the 8.0 Ω resistor?

V3=34 V,=14 SU

I-4-6-,75A (d) What current exists at B?

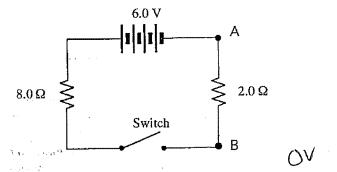

The EMF of the battery above is 6.00 V, and the terminal voltage V_{AB} is 4.60 V.

= 138A


(a) What is the total current I_o ?

(b) What is the internal resistance r?

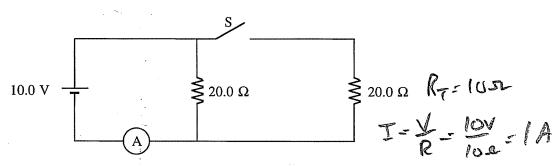
- V= E-Ir, 60-46=(1.58)r
- 1.38 A
- 1.01Ω


10. If the EMF of the battery above is 24.0 V and its internal resistance r is 1.2 Ω , what power is dissipated in the 48.0 Ω resistor? 6.6 W

- 11. (a) What is the voltage across the 6.0 Ω resistor?
 - (b) What current exists in the 12 Ω resistor?
- 2-20 = 1.01
- 0.083 A I- K- 12
- 12. A dry cell has an EMF of 1.500 V. When it is connected in series with a 1.20 Ω resistor, the current through it is 0.750 A. What is R-7:15,= 22-125-.85 0.800Ω the internal resistance of the dry cell?
- 13. Three 60-W light bulbs are connected in parallel with a 120 V source. What total current must the source supply to the three light bulbs? 1.5 A

P=180W=IV I=150W=1.5A

14.



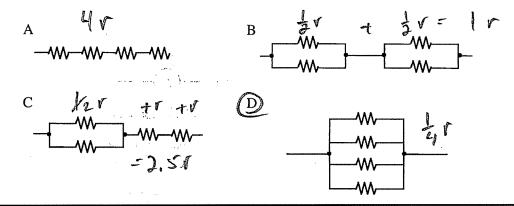
The switch in the above diagram is open. What is the potential difference V_{AB} across the 2.0Ω resistor?

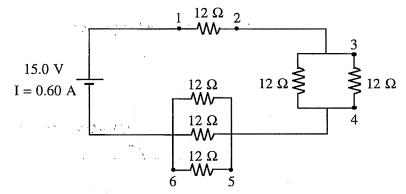
0 V

Assignment

Multiple Choice

1. The current through A is 0.50 A when the switch S is open. What will the current through A be when the switch S is closed?

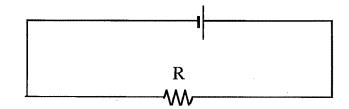

A. 0 A


B. 0.25 A

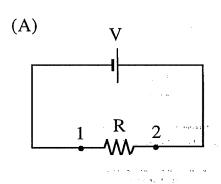
C. 0.50 A

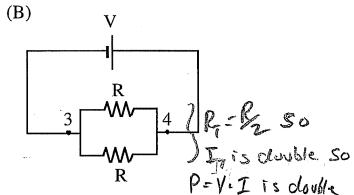
D 1.0 A

2. Which one of the following arrangements of four identical resistors will have the least resistance?



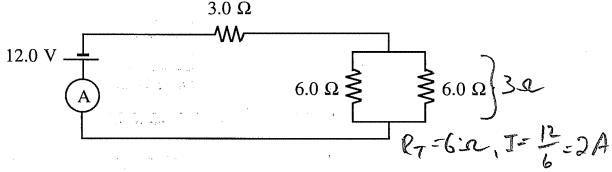
- 3. Where is the most power dissipated in this circuit?
 - (A) Between 1 and 2.
 - B. Between 3 and 4.
 - C. Between 5 and 6.


ļ


D. Power dissipated is the same in all three situations.

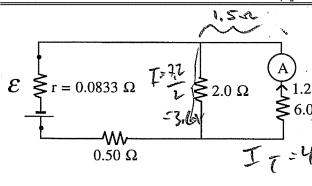
In this circuit, if you wish to measure the current through resistor R and the voltage between the ends of resistor R, where should the ammeter and voltmeter be placed?

		ammeter		voltmeter	
(A	in series	/	in series	
	B	in series	/	in parallel	/
	\mathcal{C}	in parallel		in parallel	/
	D	in parallel		in series	

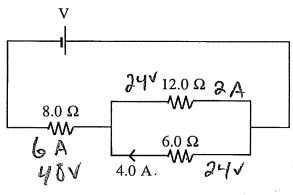

The power dissipated in circuit (A) in resistor R between 1 and 2 is P. In circuit (B) the same source voltage is used, but an identical resistor R is added in parallel with the first resistor. How much power will be dissipated between 3 and 4?

A. ¼ P

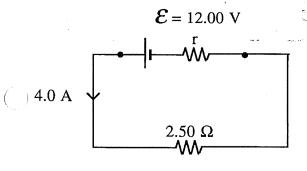
- B. % P
- C.P


E. 4 P

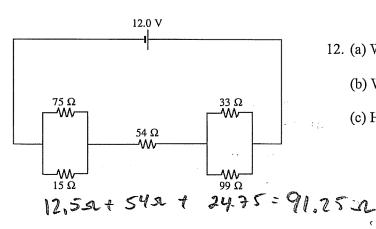
Open-Ended Questions


- What is the current in the ammeter A?
- A 1500 W kettle is connected to a 110 V source. What is the resistance of the kettle element? $P = V \cdot I = \frac{V^2}{R}$, $R = \frac{V^2}{R}$
- $^{\prime}$ 8. A flashlight contains a battery of two cells in series, with a bulb of resistance 12.0 Ω . The internal resistance of each cell is 0.260Ω . If the potential difference across the bulb is 2.88 V, what is the EMF of each cell?

R7=12.5252, I= == 2.80=.24A V7=(.24)(12.52)=3.001=2

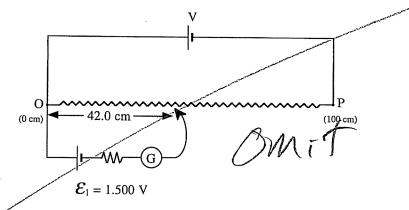


9. What is the EMF of the battery if the $\left(\frac{1.2 \text{ A}}{6.0 \Omega}\right)$ 7.7 $\sqrt{\frac{1.2 \text{ A}}{1.2 \Omega}}$ resistance of the battery is 0.0833 Ω ?

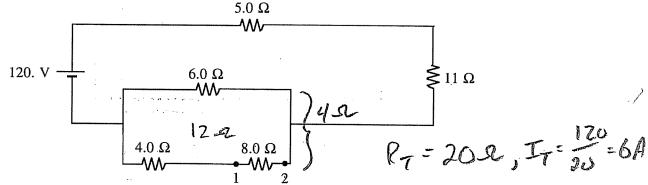

IT = 4.8A, R== 2.083s, V==IR

10. What is the voltage V of the power supply?

11. What is the internal resistance of the battery?



12. (a) What is the equivalent resistance of


this circuit?

(b) What is the current through the 54Ω $I = \frac{\sqrt{R}}{R} = \frac{12}{91}$

(c) How much power is dissipated in the 54 Ω resistor?

13. A potentiometer with a standard cell of EMF $\mathcal{E}_1 = 1.500$ V is 'balanced' when the contact is 42.0 cm from O. When \mathcal{E}_1 is replaced with a second cell with EMF \mathcal{E}_2 , balance is achieved at 48.0 cm from O. What is the magnitude of EMF \mathcal{E}_2 ?

- 14. (a) What is the voltage across the 8.0Ω resistor (between 1 and 2)?
 - (b) How much power is dissipated in the 5.0 Ω resistor?

- 6. 2.0 A
- 7. 8.1 Ω
- 8. 1.50 V
- 9. 10.0 V
- 10. 72 V
- 11. 0.50Ω
- 12. (a) 91 Ω (b) 0.13 A
 - (c) 0.93 W
- 13. 1.71 V
- 14. (a) 16 V
 - (b) $1.8 \times 10^2 \text{ W}$