Physics 11

NAME: \qquad

Elastic Forces Investigation

Score: \qquad

Part I

Purpose: To determine the relationship between the force applied to a spring and the distance it stretches.

Procedure:

1. Obtain a variety of masses, a stand and an elastic band and a spring from the side counter.
2. Hook a spring or elastic to the stand and measure it's unstretched length.
3. Add a mass to the spring and record the mass value and length of spring in the table below.
4. Repeat for the various masses and springs (elastics).

Observation:
Object:

Mass (g)	Mass (kg)	F_{g}	Length of Spring (m)	Distance Stretched (m)
No mass				
50				
100				
150				
200				
250				

Plot Fg vs Length of Spring for the above points. Calculate the slope of the line. Include units

What is the value of the x intercept from the graph?

What is the unstretched length of the spring? \qquad

Object:

Mass (g)	Mass (kg)	F_{g}	Length of Spring (m)	Distance Stretched (m)
No mass				
50				
100				
150				
200				
250				

Plot Fg vs Length of Spring for the above points. Calculate the slope of the line. Include units

What is the value of the x intercept from the graph?

What is the unstretched length of the spring?

Analysis:

1. Based on the graphs and the values in the above tables what does the x-intercept represent?
2. When the hanging force is doubled, how should the stretched length changed?
3. What could be some possible sources of error?

Part II

Getting Started:

1. Go to the PHET web site http://phet.colorado.edu/web-pages/simulations-base.html
2. Click on the Masses and Springs simulation.
3. Move the ruler beside spring \#3. Make sure spring softness is set in the middle.
4. Place the weights below on the end of spring \#3 and fill in the data table below.

Mass (g)	Mass (kg)	F_{9}	Length of Spring (m)	Distance Stretched (m)
No mass				
50				
100				
250				

1. Plot Fg vs Length of Spring for the above points. Calculate the slope of the line. Include units

2. Using Hooke's Law (Force = elasticity \times distance) calculate the elasticity of spring \#3 for three values in the above table. Find the average value. Show your work.

PhYsics 11

3. How does the slope of the line in \#1 compare to the values in \#2?
4. What is the value of the x-intercept from the above graph? ___ Based on the graph and the values in the above table what does the x-intercept represent?
5. Set the stiffness of spring \#3 to "hard".
6. Fill in the data table below.

Mass (g)	Mass (kg)	F_{9}	Distance spring stretched	
			(cm)	
50				
100				
250				

7. Using Hooke's Law calculate the elasticity of spring \#3 now.
8. Reset spring \#3 stiffness to the middle setting. Using spring \#3, Hooke's Law, and the spring constant from \#2, calculate the mass (g) of each of the unknown barrels.
Remember: force (weight) $=$ elasticity \times distance stretched
Green Brown \mid Red
9. Would you expect spring \#3 to stretch more or less on the moon? Why? Try it out and see!
10. Use the 100 g mass \& the elasticity for spring $\# 3$ to determine the value of ' g ' on Planet X.
