NEWTON'S THIRD LAW: Action \& Reaction

1. Find the action and reaction forces between a 10 kg box and a 16 kg box accelerating together on a frictionless table by a force of 40 N acting on one of them.
2. Repeat \#1 assuming that there is a force of friction of 5.0 N acting on the first box (the one on which the 40 N force is exerted), and a force of friction of 8.0 N acting on the second box.
3. Determine the force on Box A from Box B and the tension in the rope if $F_{\text {app }}=50 \mathrm{~N}, \mathrm{Box} \mathrm{A}=10 \mathrm{~kg}$, Box $B=15 \mathrm{~kg}$.

4. Determine the force on Box A from Box B and the tension in the rope if $\mathrm{F}_{\text {app }}=100 \mathrm{~N}, \mathrm{Box} A=35 \mathrm{~kg}$, Box B = 15 kg .
5. Assume Box C is inserted between Box A and Box B. Draw a diagram of this. Find the tension in both sections of the rope if $F_{\text {app }}=100 \mathrm{~N}$, Box $A=15 \mathrm{~kg}$, Box $B=15 \mathrm{~kg}$, Box $C=20 \mathrm{~kg}$.
6.

7. Repeat \#6 using a 4.0 kg mass and a 6.0 kg mass.

Homework:

1. Repeat practice \#3 using a 2.0 kg and a 4.0 kg block on the table, and $\mu=0.2$ and Fapp $=40 \mathrm{~N}$.
2. Using the above masses, what value of μ will produce too much friction for the object to move?
3. Repeat practice \#6 using a 10.0 kg mass and a 12.0 kg mass.
