\qquad

Type II Projectiles

1. Draw a velocity vector diagram and determine the horizontal and vertical components of velocity for the following situations:
a) An Olympic javelin thrower releases the javelin at $30 \mathrm{~m} / \mathrm{s}$ at an angle of 40° above the horizontal.

$$
V x=
$$

\qquad , Vy = \qquad
b) While skateboarding a student leaves a jump at 20° and velocity $5.0 \mathrm{~m} / \mathrm{s}$.

$$
\mathrm{Vx}=\ldots, \mathrm{Vy}=
$$

c) A football kickoff is moving with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ at 58° above the field.

$$
\mathrm{Vx}=\longrightarrow \mathrm{Vy=}
$$

\qquad
d) A small electric current zaps a frog causing it to jump at $2.0 \mathrm{~m} / \mathrm{s}$ on an angle of 30°.

$$
\mathrm{Vx}=\ldots, \mathrm{Vy}=
$$

e) A golfer strikes a ball giving it a velocity of $35 \mathrm{~m} / \mathrm{s}$ at 70°.

$$
\mathrm{Vx}=\ldots, \mathrm{Vy}=
$$

\qquad
2. A cannon fires a cannonball at a velocity of $208 \mathrm{~m} / \mathrm{s}$ at an angle of 56°. Determine
a) the maximum height the cannonball reaches.
b) the range of the cannonball.
c) the time of flight.

Physics 11

3. A rifle fires a bullet at a velocity of $500.0 \mathrm{~m} / \mathrm{s}$ at an angle of 16°. Determine:
a) the maximum height the bullet reaches.
b) the range of the bullet.
c) the time of flight of the bullet.
4. A baseball is hit at $30.0 \mathrm{~m} / \mathrm{s}$ on an angle of 40°.
a) What is its maximum height?
b) What is the vertical velocity of the baseball 3.0 s after leaving the bat? is it moving up or down?
c) What is the vertical velocity of the baseball when it reaches a height of 10 m ?
5. A ball is thrown horizontally at $10 \mathrm{~m} / \mathrm{s}$ and hits the ground 5.0 seconds later. From what height was it thrown, and what horizontal distance did it go? (Type 1)
6. A cannon is fired at $200 \mathrm{~m} / \mathrm{s}$ and 30° above the horizon. Calculate the range, max height and velocity at the max height for the cannon ball.

PhYsics 11

7. What is the range of a projectile whose initial velocity is $417 \mathrm{~m} / \mathrm{s}$ at an angle of 60°.
8. A rock is thrown from a level field with an initial vertical component of $19.6 \mathrm{~m} / \mathrm{s}$ and a horizontal component of $9.8 \mathrm{~m} / \mathrm{s}$. If frictional forces are considered negligible, what is the horizontal speed of the ball at the top of its path?
9. A ball with a speed of $5.7 \mathrm{~m} / \mathrm{s}$ rolls along a horizontal table 1.4 m high and falls off the edge. (Air friction is insignificant.) How long does the ball take to fall to the floor?
10. A projectile is fired at $95 \mathrm{~m} / \mathrm{s}$ at an angle of 22° above the horizontal.
a) Calculate the horizontal displacement of the projectile after 2.3 seconds.
b) Calculate the vertical displacement of the projectile after 2.3 seconds.
11. A 51 g golf ball is projected upwards from a level field with an initial vertical component of $19.6 \mathrm{~m} / \mathrm{s}$ and a horizontal component of $9.8 \mathrm{~m} / \mathrm{s}$. Frictional forces are considered negligible.
a) What is the total time that the ball remains in the air?
b) What is the range of the ball?

PhYsics 11

12. A boy throws a ball upwards. While the ball is rising its: (select one)
A. velocity and acceleration are both decreasing significantly.
B. velocity and acceleration are both downwards.
C. velocity is upward and its acceleration is downwards.
D. velocity and acceleration are both upward.
13. What is the range and max height of an artillery shell fired at $417 \mathrm{~m} / \mathrm{s}$ and angle 30.2°, and what is its total velocity after 34.0 seconds?
14. An air rifle is to shoot a target, which is 80.0 m away at the same height. If the bullet leaves the muzzle at 20° what was the initial velocity (magnitude only) of the pellet?

Answers: 1a. $23.0 \mathrm{~m} / \mathrm{s}, 19.3 \mathrm{~m} / \mathrm{s}$, b. $4.7 \mathrm{~m} / \mathrm{s}, 1.7 \mathrm{~m} / \mathrm{s}$, c. $10.6 \mathrm{~m} / \mathrm{s}, 17.0 \mathrm{~m} / \mathrm{s}$, d. $1.7 \mathrm{~m} / \mathrm{s}, 1.0 \mathrm{~m} / \mathrm{s}$, e. $12.0 \mathrm{~m} / \mathrm{s}, 32.9 \mathrm{~m} / \mathrm{s}$, 2a. 1516 m , b. 4092 m , c. 35.2 s , 3a. 969 m , b. 13500 m , c. 28.1 s 4 a. 19 m , b. $-10.1 \mathrm{~m} / \mathrm{s}$, down, c. $13.3 \mathrm{~m} / \mathrm{s}, ~ 5) 123 \mathrm{~m}, 50.0 \mathrm{~m}$ 6) $3.53 \times 10^{3} \mathrm{~m}, 510 \mathrm{~m}, 173 \mathrm{~m} / \mathrm{s}$ [horizontal] 7) $1.54 \times 10^{4} \mathrm{~m}, 8.9 .8 \mathrm{~m} / \mathrm{s}, 9.0 .53 \mathrm{~s}, 10.203 \mathrm{~m}, 11 \mathrm{a} .4 .0 \mathrm{~s}, \mathrm{~b} .39 .2 \mathrm{~m}, 12$. C, 13) $1.54 \times 10^{4} \mathrm{~m}, 381 \mathrm{~m} / \mathrm{s}$ at 19° down from horizontal $14.34 .9 \mathrm{~m} / \mathrm{s}$

