## Incline Problems

## Assignment

1. The diagram below shows a cart being pulled up a frictionless slope by a rope. Which of the following best represents the free body diagram for the cart?
A.

B.

D.


2. A 12 kg cart on a $23^{\circ}$ frictionless incline is connected to a wall as shown.


What is the tension $T$ in the cord?
3. An 87 kg block slides down a $31^{\circ}$ slope as shown in the diagram below. The coefficient of friction between the block and the surface is 0.25 . What is the acceleration of the block?

4.

A 15 kg block has a constant acceleration of $2.2 \mathrm{~m} / \mathrm{s}^{2}$ down a $30^{\circ}$ incline.


What is the magnitude of the friction force on the block?
5. A 4.0 kg block has a speed of $9.0 \mathrm{~m} / \mathrm{s}$ at $\mathbf{X}$. What is the maximum distance, $d$, travelled by the block? Ignore friction.

6. A 2.0 kg block is sliding down a $15^{\circ}$ incline. The coefficient of friction is 0.62 . At some position the block has a speed of $7.0 \mathrm{~m} / \mathrm{s}$. What distance $d$ will this block move before coming to rest?

7. Two masses are connected by a light string which passes over a frictionless pulley as shown.

The coefficient of friction between the 2.5 kg mass and the surface is 0.33 .

a) Find the acceleration of the system of masses.
(7 marks)
b) Find the tension in the string

## Enrichment

8. A 5.0 kg concrete block accelerates down a $34^{\circ}$ slope at $4.2 \mathrm{~m} / \mathrm{s}^{2}$. Find the coefficient of friction between the block and the slope.

9. Three masses connected by a light string are arranged on frictionless surfaces, as shown in the diagram below. The strings pass over frictionless pulleys. Determine the direction and magnitude of the acceleration of $\mathbf{m}_{1}$.
A.

|  | DIRECTION OF $\mathbf{m}_{1}$ |
| :---: | :---: |
| ACCELERATION $\left(\mathrm{m} / \mathrm{s}^{2}\right)$ |  |
| up incline | 0.20 |
| B. | down incline |
| C. | up incline |
| down incline | 0.20 |
|  | do |
|  |  |


D.
10. An 18 kg cart is connected to a 12 kg hanging block as shown. (Ignore friction.)

a) Draw and label a free body diagram for the 18 kg cart.
(2 marks)
b) What is the magnitude of the acceleration of the cart?
(5 marks)

Answers: 1. A, 2. $46 \mathrm{~N}, 3.2 .9 \mathrm{~m} / \mathrm{s}^{2}, 4.41 \mathrm{~N}, 5.7 .2 \mathrm{~m}, 6.7 .4 \mathrm{~m}, 7.3 .6 \mathrm{~m} / \mathrm{s}^{2}, 27.3 \mathrm{~N}, 8.0 .16,9 . A$, 10. $7.3 \mathrm{~m} / \mathrm{s}^{2}$

