Kinematics II

1) A car traveled up a hill at constant speed of $10.0 \mathrm{~m} / \mathrm{s}$ and then returned down the hill at $20.0 \mathrm{~m} / \mathrm{s}$. If the time to turn around is ignored, what was the average speed for the trip?
2) A late passenger, sprinting at $8 \mathrm{~m} / \mathrm{s}$, is 30 m away from the rear end of a train when it starts out of the station with uniform acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$. Can the passenger catch the train if the platform is long enough?

Assignment

3) A ball is thrown vertically up at $3.0 \mathrm{~m} / \mathrm{s}$ off the edge of a 12 m cliff. How long will it take for the ball to hit the ground at the bottom of the cliff?
4) A stone is thrown vertically upward with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff 65 m high. a) How much later does it reach the bottom of the cliff? b) What is its speed just before hitting? c) What total distance did it travel?
5) A 90 m long train begins accelerating from rest. The front of the train passes a railway worker, who is standing 200 m from where the front of the train started, at a speed of $25 \mathrm{~m} / \mathrm{s}$. What will be the speed of the last car as it passes the worker?
6) An arrow is fired at an apple 25.0 m away. If the sound of the arrow piercing the apple is heard 0.75 s later, how fast did the arrow travel? Assume the speed of sound is $330 \mathrm{~m} / \mathrm{s}$.

Enrichment

7) A race car driver must average $200 \mathrm{~km} / \mathrm{h}$ for four laps to qualify for a race. Because of engine trouble, the car averages only $170 \mathrm{~km} / \mathrm{h}$ over the first two laps. What average speed must be maintained for the last two laps?
8) A rock is dropped down a deep well and the sound of it striking the water is heard 3.0 s later. If the speed of sound is $340 \mathrm{~m} / \mathrm{s}$, how deep is the well?
9) A falling stone takes 0.30 s to travel past a window 2.4 m tall. From what height above the top of the window did the stone fall?

Answers: 1) $13.3 \mathrm{~m} / \mathrm{s}, 2)$ yes, $t=6 \mathrm{~s}$ or $10 \mathrm{~s}, 3) 1.9 \mathrm{~s}, 4) 4.8 \mathrm{~s},-37 \mathrm{~m} / \mathrm{s}, 75.2 \mathrm{~m}, 5) 30.1 \mathrm{~m} / \mathrm{s}, 6$) $37.1 \mathrm{~m} / \mathrm{s}, 7) 243 \mathrm{~km} / \mathrm{h}, 8), 41 \mathrm{~m} 9) 2.17 \mathrm{~m}$

