\qquad

Rotational Equilibrium

1. A uniform beam of mass 25 kg rests on supports P and Q , as shown in the diagram below. What force is exerted by support P \& support Q on the beam?

2. A 3.0 m uniform beam of mass 15 kg is pivoted 1.0 m from the end as shown below. A 35 kg child sits 0.60 m from the pivot. How far, \boldsymbol{d}, from the pivot, must a 20 kg child sit in order for the beam to be in equilibrium? What force does the pivot exert on the beam?

3. A platform for window-cleaning is supported as shown. If a man of mass 75 kg stands at point X , what is the tension in support A \& B (if you assume that the mass of the platform is negligible in comparison to the mass of the man)?

4. A uniform 18 kg beam hinged at \mathbf{P} is held horizontal by a vertical string that can withstand a maximum tension of 350 N . A 5.0 kg mass is suspended from the end of the beam as shown. At what minimum distance, \boldsymbol{x}, can the string be attached without breaking?

5. Forces are exerted on a bar as shown. What is the magnitude of $\mathrm{F}_{1} \& \mathrm{~F}_{2}$?

6. A uniform beam of mass 160 kg is being lifted as shown. How far from the left end should a weight of mass 500 kg be hung to keep the beam level?

7. The motorcycle shown has a mass of 200 kg and a wheel base of 1.8 m . If the rear wheel exerts a 1200 N force on the ground, find how far the motorcycle's centre of gravity is located from the front wheel.

8. A load of mass 12 kg is hung from the end of a horizontal bar whose mass is 8.0 kg and whose length is 4.0 m . At what distance from the load should a single upward force of 196 N be exerted to keep the bar in equilibrium?

Answers: 1) $85 \mathrm{~N}, 160 \mathrm{~N}, 2) 0.675 \mathrm{~m}, 690 \mathrm{~N}, 3) 437 \mathrm{~N}, 298 \mathrm{~N}, 4) 0.55 \mathrm{~m}, 5) 31.25 \mathrm{~N}, 18.75 \mathrm{~N}, 6) 0.584 \mathrm{~m}, 7) 1.1 \mathrm{~m}$, 8) 0.80 m

