PHYSICS 12

Name: _____

Vector Handout

Assignment

- 1. Which one of the following is a vector quantity?
 - A. tim
 - B. speed
 - C. energy
 - D.displacement
- 2. Which of the following statements concerning yector and scalar quantities is **incorrect**?
 - (A) All scalar quantities have direction.
 - B. All vector quantities have direction.
 - C. All scalar quantities have magnitude.
 - D. All vector quantities have magnitude.

- 3. Which of the following is a vector quantity?
 - A. work
 - B. speed
 - (C)acceleration
 - D. kinetic energy
- 4. Which set of quantities contains no vectors?

 A mass, speed, time
 - B. force, speed, velocity
 - C. acceleration, force, time
 - D. acceleration, mass, velocity
- 5. Convert the following vectors to x and y components
 - a) 25 m/s [35° N of E]

b) 373 N [42° W of N]

- 6. Add/subtract the following vectors.
 - a)35 m/s 2 [N] + 25m/s 2 [S]

b) 163 km/h [S] + 37 km/h [W]

- c) 275 N [N] 200 N [E]
 - + 300 N[W]

 R²=200²+275², R=340.

 R=340 N (200)=36° [W of N]

 R=340 N (200) [W of N]
- d) 256 m/s [25° N of E] + 313 m/s [5° S of E]

756 708 + 312 125° 108 + 312 313

R= 55/m/s @8°[Nof E]

7. Two forces act on an object as shown in the diagram. Which of the following **best** shows the resultant R of these forces?

A.

8. An airplane which was flying eastward is later flying southward at the same speed. Which vector shows the airplane's **change** in velocity?

9. Initial velocity vector \mathbf{V}_0 and final velocity vector \mathbf{V} are shown below. Which of the following represents the change in velocity

Wind

B.

10. A pilot points an aircraft due east, while the wind blows from the south.

The resultant velocity of the aircraft over the ground is 64 m/s, 25° N of E. At what speed does the wind blow?

A. 2.6 m/s

B. 27 m/s

C. 30 m/s

D. 58 m/s

11. Pamela swims at 3.2 m/s relative to the water, heading east. The current flows south at 1.2 m/s. Find Pamela's resultant velocity (mag. & dir.).

12. At what angle should Pamela swim if she wants to head straight across the river?

13. If the river in the above problems is 200 m wide how long will it take Pamela to cross the river in each case?

A sailboat is heading 35° East of North at 7.2 m/s. The ocean current is 25° South of East at 1.2 m/s. What speed and direction is the sailboat heading?

/\$. A B747 is crossing the Pacific at 420 knots on a heading of W (air velocity). Air Traffic Control radar is tracking the plane at 470 knots [22° S of W] (ground velocity). What is the wind speed and direction?

16. Determine the ground velocity of a plane with air velocity of 150 m/s @ 30 [W of S] and a wind velocity of 25 m/s [W]

Enrichment

A passenger jet needs to reach a speed of 100 m/s on the runway for takeoff. If the runway is 2.5×10^3 m long, what minimum average acceleration from rest is needed?

$$Q = 1$$

$$V_0 = 0$$
 $G = 1$ $V_0^2 = V_0^2 + 2\alpha d$
 $V_1 = 100 \text{ m/s}$ $100^2 = 0^2 + 2\alpha (2.5 \times 10^3 \text{ m})$

 $C = 2.5 \times 10^{-5}$ At what speed must a ball be thrown upwards to reach a maximum height of 25 m?

$$d=25 \qquad V_{f}^{2}=V_{o}^{2}+2ad$$

$$0=V_{o}^{2}+2(-9.8)(25)$$

19. A skier accelerates uniformly from 5.2 m/s to 12.8 m/s at 0.85 m/s². Find the distance she travels.

a . 85 W.

20. A rock is released from the top of a 30 m-high cliff at the same time as a ball is thrown upwards from the base of the cliff at 20 m/s. How much time elapses before they collide?

se of the cliff at 20 m/s. How much time elapses before they collide?

$$\frac{d_1}{d_1} = \frac{d_1}{d_2} = \frac{d_1}{d_2} = \frac{d_2}{d_1} = \frac{d_2}{d_2} = \frac{d_1}{d_2} = \frac{d_1}{d_2}$$

Answers: 1) D, 2) A, 3) C, 4) A, 5) A, 6) A, 7) C, 8) B, 9) D, 10) C, 11) A, 12) 2.0 m/s², 13) 22 m/s, 14) 80 m, 15) 1.5 s