\qquad

Review 2

1. A person that swims at $3.2 \mathrm{~m} / \mathrm{s}$ swims straight across a river with a current of $1.4 \mathrm{~m} / \mathrm{s}$. What is the resulting velocity of the swimmer (across and downstream)? At what angle compared to straight across is the swimmer moving?
2. The swimmer above decides to swim into the current at such an angle that he will travel straight across. Find the angle (compared to straight across) at which he would have to swim. Calculate his velocity across the stream.
3. A boat travels east at $13 \mathrm{~km} / \mathrm{hr}$ when a tide is flowing north at $1.2 \mathrm{~m} / \mathrm{s}$. Find the actual velocity and heading of the boat.
4. A plane with an air speed of $400 \mathrm{~km} / \mathrm{hr}$ wants to go north but a wind of $70 \mathrm{~km} / \mathrm{hr}$ is blowing west. What must be the plane's heading (to go north)? What will be its resulting ground speed?
5. A rock is thrown horizontally from the top of a cliff 98 m high, with a horizontal speed of $27 \mathrm{~m} / \mathrm{s}$.
(a) For what interval of time is the rock in the air?
(b) How far from the base of the cliff does the rock land?
(c) With what velocity does the rock hit?

Physics 11

6. A ball is thrown with a velocity of $24 \mathrm{~m} / \mathrm{s}$ at an angle of 30° to the horizontal.
(a) What are the vertical and horizontal components of the initial velocity?
(b) How long is the ball in the air?
(c) How far away will the ball land?
(d) To what maximum height will the ball rise?
(e) With what velocity will the ball land?
7. A youngster hits a baseball giving it a velocity of $22 \mathrm{~m} / \mathrm{s}$ at an angle of 62° with the horizontal. How far will the ball travel before it is caught by a fielder (assuming the fielder catches the ball at the same height that it is hit)?
8. Determine the force of gravity between the Sun (Mass of Sun $=1.98 \times 10^{30} \mathrm{~kg}$) and the Earth (Mass of earth $\left.=5.98 \times 10^{24} \mathrm{~kg}\right)$. The distance between the sun and Earth's centers is $1.50 \times 10^{11} \mathrm{~m}$.
9. What is the force of gravity between two 250 kg sumo wrestlers that are 2.0 m apart?
10. What is the distance between two 20.0 kg objects that have a mutual force of gravitational attraction of $3.0 \times 10^{-7} \mathrm{~N}$?

Physics 11

11. What is the gravitational field strength of a planet with a mass of $7.9 \times 10^{27} \mathrm{~kg}$ and radius of 3.2×10^{6} m ?
12. The constant G in the Law of Universal Gravitation has a value of $6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$. Calculate the force of gravity between:
a) 100.0 kg person and the earth (Mass of earth $=5.98 \times 10^{24} \mathrm{~kg}$, Radius of earth $=6.38 \times 10^{6} \mathrm{~m}$)
b) 100.0 kg person and the moon (Mass of moon $=7.35 \times 10^{22} \mathrm{~kg}$, Radius of moon $=1.74 \times 10^{6} \mathrm{~m}$)
13. A force of 120 N is needed to push a box along a road at a steady speed. If the force of gravity on the box is 250 N , what is the coefficient of kinetic friction between the box and the road?
14. The coefficient of kinetic friction between a steel block and an ice rink surface is 0.0100 . If a force of 24.5 N keeps the steel block moving at steady speed, what is the force of gravity on the block?
15. A boy exerts a 36.0 N horizontal force as he pulls a 52.0 N sled across a cement sidewalk at constant speed. What is the coefficient of kinetic friction between the sidewalk and the metal sled runners? Ignore air resistance.
16. A 10.0 N force stretches a length of fishing line by 10.0 cm . What is the line's spring constant?
17. A 20.0 N force is used to stretch various rubber bands. Calculate the amount of stretch that will occur, given each of the following spring constant.
(a) $200 . \mathrm{N} / \mathrm{m}$
(b) $100 . \mathrm{N} / \mathrm{m}$
18. An archer pulls back with a force of 240 . N, moving the arrow 60.0 cm . What is the spring constant of the bow?

Answers:

1. $3.5 \mathrm{~m} / \mathrm{s} \& 23.6^{\circ}$
2. $2.9 \mathrm{~m} / \mathrm{s}$ @ $\mathbf{2 6}^{\circ}$
3. $3.8 \mathrm{~m} / \mathrm{s}$ at $18.4^{\circ} \mathrm{N}$ of E
4. $10^{\circ} \mathrm{E}$ of $\mathrm{N}, 394 \mathrm{~km} / \mathrm{h}$
5. $4.47 \mathrm{~s}, 121 \mathrm{~m}, 51.5 \mathrm{~m} / \mathrm{s}$
6. $12 \mathrm{~m} / \mathrm{s}, 2.45 \mathrm{~s}, 51.0 \mathrm{~m}$, 7.35 m ,
$24 \mathrm{~m} / \mathrm{s} 30^{\circ}$ from the
horizontal
7. 40.9 m
8. $3.51 \times 10^{22} \mathrm{~N}$
9. $1.04 \times 10^{-6} \mathrm{~N}$
10. 0.30 m
11. $5.15 \times 10^{4} \mathrm{~N} / \mathrm{kg}$
12. $980 \mathrm{~N}, 162 \mathrm{~N}$
13. 0.48
14. 2450 N
15. 0.692
16. $100 \mathrm{~N} / \mathrm{m}$
17. $0.100 \mathrm{~m}, \mathbf{0 . 2 0 0} \mathrm{~m}$
18. $400 . \mathrm{N} / \mathrm{m}$
