$\qquad$

## Projectile Handout

## Assignment

1. Which one of the following best describes the motion of a projectile close to the surface of the Earth? (assume no friction)

|  |  | Vertical Acceleration |
| :--- | :---: | :---: |
| A. | constant | Horizontal SPEED |
| B. | constant | changing |
| C. | changing | constant |
| D. | changing | changing |

2. If friction is negligible, which of the following is true for the velocity components of projectiles?

|  | HORIZONTAL VELOCITY <br> COMPONENT | VERTICAL VELOCITY <br> COMPONENT |
| :--- | :---: | :---: |
| A. | constant | constant |
| B. | constant | changes |
| C. | changes | constant |
| D. | changes | changes |
|  |  |  |

3. Which of the following graphs represents the horizontal velocity component $v x$ versus time for a projectile thrown horizontally off a cliff? (Ignore air resistance.)
A.

B.

C.

D.

4. Which of the following remain(s) constant for a projectile: its horizontal velocity component, $v H$, its vertical velocity component, $v v$, its vertical acceleration, g ?
A. $v v$
B. $g$ and $v v$
C. $g$ and $v H$
D. $g, v H$ and $v v$
5. A ball is rolled off a horizontal roof at $16 \mathrm{~m} / \mathrm{s}$. After leaving the roof, how long will the ball take to reach a speed of $18 \mathrm{~m} / \mathrm{s}$ ?
A. 0.20 s
B. 0.84 s
C. 1.8 s
D. 2.5 s
6. At $t=0 \mathrm{~s}$ a ball rolls off the edge of a vertical cliff. At $t=2.0 \mathrm{~s}$ the ball is 6.0 m from the cliff as shown. How far is the ball from the cliff at $t=4.0 \mathrm{~s}$ ?

7. A projectile is launched over level ground with a speed of $240 \mathrm{~m} / \mathrm{s}$ at $35^{\circ}$ to the horizontal. If friction is negligible, what is the height of the projectile 17 s after launch?
A. $9.2 \times 10^{2} \mathrm{~m}$
B. $1.9 \times 10^{3} \mathrm{~m}$
C. $2.7 \times 10^{3} \mathrm{~m}$
D. $5.5 \times 10^{3} \mathrm{~m}$
8. A projectile is launched over level ground at $35 \mathrm{~m} / \mathrm{s}$ at an angle of $40^{\circ}$ above the horizontal. What is the projectile's time of flight?
A. 2.3 s
B. 4.6 s
C. 5.5 s
D. 7.1 s
9. A 1.50 kg projectile is launched at $18.0 \mathrm{~m} / \mathrm{s}$ from level ground. The launch angle is $26.0^{\circ}$ above the horizontal. (Assume negligible friction.)
a) What is the maximum height reached by this projectile?
b) How fast will the projectile be travelling when it is at its maximum height?
10. A projectile is launched over level ground at $35 \mathrm{~m} / \mathrm{s}$ at an angle of $24^{\circ}$ above the horizontal. Friction is negligible.
a) What is the time of flight of this projectile?
b) What is the velocity (magnitude and direction) of this projectile 2.5 s after launch?
11. A soccer ball is kicked over level ground with an initial velocity of $18 \mathrm{~m} / \mathrm{s}, 24^{\circ}$ above the horizontal. What is the range of the ball?
12. A baseball is thrown towards a house 30 m away with a velocity of $20 \mathrm{~m} / \mathrm{s}$ at an angle of $35^{\circ}$ from ground level. If the house has a large window on the $2^{\text {nd }}$ floor between 2.5 m and 3.5 m above the ground does the baseball hit the window? (Show all work)
13. A projectile is launched towards a wall as shown in the diagram below. How high up the wall does the projectile hit?


## Enrichment

14. A boat, which can travel at $5.6 \mathrm{~m} / \mathrm{s}$ in still water heads due east across a river from a dock at $\mathbf{X}$. The boat's resultant path is $32^{\circ}$ south of east.
a) What is the speed of the current?
b) How long will it take the boat to reach the far shore if the river is 185 m wide?


## Physics 12

15. Consider the diagram below. What are the components of the 125 N force?
A.

| $x-$ COMPONENT | $y$-COMPONENT |
| :---: | :---: |
| -62.5 N | 72.2 N |
| -72.2 N | 62.5 N |
| -62.5 N | 108 N |
| -108 N | 62.5 N |


16. Which of the following contains scalar quantities only?
A. speed, energy
B. velocity, energy
C. speed, displacement
D. velocity, momentum
17. An aircraft heads due south with a speed relative to the air of $44 \mathrm{~m} / \mathrm{s}$. Its resultant speed over the ground is $47 \mathrm{~m} / \mathrm{s}$. The wind blows from the west.
a) What is the speed of the wind?
b) What is the direction of the aircraft's path over the ground?
18. Two velocity vectors, $v_{1}$ and $v_{2}$ are shown. Which of the following best represents the resultant of the addition of the two velocity vectors?


Answers: 1. A, 2. B, 3. C. 4. C, 5. B, 6. $12 \mathrm{~m}, 7 . \mathrm{A}, 8 . \mathrm{B}, 9.12 \mathrm{~m}, ~ 9 \mathrm{a} .3 .2 \mathrm{~m}, \mathrm{~b} .16 .2 \mathrm{~m} / \mathrm{s}, 10 \mathrm{a} .2 .9 \mathrm{~s}, \mathrm{~b} .33 .6 \mathrm{~m} / \mathrm{s}$ @ $18^{\circ}$ below the horizontal, 11. $24.4 \mathrm{~m}, 12$. misses target, $h=4.5 \mathrm{~m}, 13.3 .4 \mathrm{~m}, 14 . a .3 .5 \mathrm{~m} / \mathrm{s}, \mathrm{b} .33 .0 \mathrm{~s} 15$. D 16. A 17a. 17 $\mathrm{m} / \mathrm{s} \mathrm{b} .69^{\circ}$ south of east, 18. C

