\qquad

Specific Heat Capacity

Use $\Delta \mathrm{E}_{\mathrm{h}}=\mathrm{mc} \Delta \mathrm{T}$ to solve the following problems.

1. How much heat is needed to raise the temperature of 90.0 kg of water from $18^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$?
2. If 1.0 MJ (megajoule) of heat is transferred to 10.0 kg of water initially at $15^{\circ} \mathrm{C}$, what will its final temperature be?
3. If 12.0 kg of water cools from $100^{\circ} \mathrm{C}$ down to room temperature $\left(20^{\circ} \mathrm{C}\right)$, how much heat will it release to the environment?
-4.032 MJ (negatives indicates energy given off)
4. Why is water such a desirable material to use as a coolant in a car engine?
5. If it takes 1200 J to raise the temperature of 0.500 kg of brass from $20.0^{\circ} \mathrm{C}$ to $26.2^{\circ} \mathrm{C}$, what is the specific heat capacity of brass?

$$
\mathrm{c}=387 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}
$$

6. How much heat would be needed to warm 1.6 kg of ice from $-15^{\circ} \mathrm{C}$ up to its melting point of $0.0^{\circ} \mathrm{C}$?
50.4 kJ
7. A 5.0 kg block of lead at $250^{\circ} \mathrm{C}$ cools down to $20^{\circ} \mathrm{C}$. How much heat does it give off in doing so?
-149.5 kJ (negative implies energy given off)
Table of Specific Heat Capacities

SUBSTANCE	$\left.\mathbf{(J / k g} /{ }^{\circ} \mathbf{C}\right)$	SUBSTANCE	$\left(\mathbf{J} / \mathbf{k g} /{ }^{\circ} \mathbf{C}\right)$
water	4200	steam	2100
methyl alcohol	2400	aluminum	920
ethylene glycol (antifreeze)	2200	glass	840
ice	2100	iron	450
kerosene	2100	copper	430
		lead	130

