PhYSICS 12

NAME: \qquad

1. A transformer has 280 turns in the primary and 110 in the secondary. What kind of transformer is this and, assuming 100% efficiency, by what factor does the voltage change? Step down, $\mathbf{2 . 5 4}$ times
2. An ideal transformer has 150 turns in the primary coil and 1800 turns in the secondary coil. If the primary coil is connected to 120 V ac and draws 7.5 A of current, what is the current in the secondary coil? 0.625 A
3. Which one of the following best describes a step-up transformer? [primary circuit: p; secondary circuit: s] C

	VOLTAGE	CURRENT
A.	$\mathrm{V}_{\mathrm{p}}>\mathrm{V}_{\mathrm{s}}$	$\mathrm{I}_{\mathrm{p}}>\mathrm{I}_{\mathrm{s}}$
B.	$\mathrm{V}_{\mathrm{p}}>\mathrm{V}_{\mathrm{s}}$	$\mathrm{I}_{\mathrm{p}}<\mathrm{I}_{\mathrm{s}}$
C.	$\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{s}}$	$\mathrm{I}_{\mathrm{p}}>\mathrm{I}_{\mathrm{s}}$
D.	$\mathrm{V}_{\mathrm{p}}<\mathrm{V}_{\mathrm{s}}$	$\mathrm{I}_{\mathrm{p}}<\mathrm{I}_{\mathrm{s}}$

4. A transformer has four times as many turns on the secondary as on the primary. If the primary voltage is 120 V ac, which of the following describes the transformer? D

	SECONDARY VOLTAGE	TyPE
A.	30 V ac	step down
B.	30 V ac	step up
C.	480 V ac	step down
D.	480 V ac	step up

5. A transformer connected to a 120 V ac source has an output of 24 V ac. If the primary coil has 330 turns, how many turns of wire are there in the secondary coil? B
A. 24 turns
B. 66 turns
C. 330 turns
D. 1650 turns
6. For what type of input current will the output current in a transformer be zero? A
A. dc
B. ac
C. increasing dc

D. decreasing dc
7. Neon signs require 12 kV for their operation. To operate from a $220-\mathrm{V}$ line, what must be the ratio of the secondary to primary turns of the transformer? What would the voltage output be if the transformer were connected backwards? 60:1.1, 4.0 V
8. If 30 MW of power at 45 kV arrives at a town from a generator via 4.0Ω transmission lines, calculate a) the Emf at the generator end of the lines and 47.7 kV
b) the fraction of power generated that is lost in the lines. $\mathbf{6 \%}$

9. If 50 kW is to be transmitted over two $0.100-\Omega$ lines, estimate how much power is saved if the voltage is stepped up from 120 V to 1200 V and then down again, rather than simply transmitting at 120 V . Assume the transformers are each 100% efficient. $17.2 \mathbf{k W}$

10. A transformer has 250 turns on its primary coil and 25000 turns on its secondary. If the input voltage is 120 V AC, what is the output voltage?
11. A spark plug for a car needs about $20,000 \mathrm{~V}$ for the spark to jump the gap. A transformer is used to step up the voltage from the 12 V car battery. If the primary coil of the transformer has 200 turns of wire, how many turns must the secondary coil have? 3.33×10^{5} turns

12. Doorbells and buzzers usually are designed for 12 V ac and they are powered by small transformers that step down 110 V ac to 12 V ac . Suppose that such a transformer has a primary winding with 1500 turns.
a) How many turns are there on the secondary winding? 164
b) If the current in the bell is 500 mA what was the current in the primary windings? $\mathbf{0 . 0 5 4 5} \mathrm{A}$
13. The primary coil of a transformer has 5000 turns and the voltage across it is 120 V . The secondary coil has 50 turns.
a) What is the secondary voltage? 1.2 V
b) What is the primary coil current if the current in the secondary coil is $10.0 \mathrm{~A} ? \mathbf{0 . 1 0} \mathbf{~ A}$
