\qquad

Vector Wrap Up

1) List 4 scalar quantities and 4 vector quantities. How are vectors different from scalars?
2) Find the resulting displacement (magnitude and direction) of the following movements: $12.0 \mathrm{~m}[\mathrm{~N}], 5.0 \mathrm{~m}$ [E], 3.0 m [S], $6.0 \mathrm{~m}[\mathrm{E}]$, and 9.0 m [W].

Magnitude: \qquad
Direction: \qquad
3) Two forces pull on a mass one 12 N due east, the other 5 N due south. Find the resultant.

Magnitude: \qquad
Direction: \qquad
4) A boat wants to go directly East across a river flowing at $7.0 \mathrm{~m} / \mathrm{s}$ to the North. If the boat engine can produce a speed of $15.0 \mathrm{~m} / \mathrm{s}$ what angle should it travel, and what will be its speed?

Magnitude: \qquad
Direction: \qquad
5) Find the resultant velocity of a plane which flies at $50.0 \mathrm{~m} / \mathrm{s}$ at $30.0^{\circ} \mathrm{N}$ of E and a wind which blows at 20.0 m / s toward $55.0^{\circ} \mathrm{S}$ of E .

Magnitude: \qquad
Direction: \qquad
6) A plane is seen from the ground to be flying at $100 \mathrm{~m} / \mathrm{s}$ at $60^{\circ} \mathrm{S}$ of E . If the wind is known to be $20 \mathrm{~m} / \mathrm{s}$ at $30^{\circ} \mathrm{N}$ of E then what is the plane's speed and heading through the air?

Magnitude: \qquad
Direction: \qquad
7) Find the components of the following vectors
a) 10 m at $30^{\circ} \mathrm{N}$ of E
b) 20 N at $45^{\circ} \mathrm{W}$ of N
c) $40 \mathrm{~m} / \mathrm{s}$ at $60^{\circ} \mathrm{S}$ of W
d) $15 \mathrm{kgm} / \mathrm{s}$ at $17^{\circ} \mathrm{W}$ of S
e) 17 m due West
f) 10 N at $40^{\circ} \mathrm{S}$ of E
8) Adding parallel vectors:
a) $10 \mathrm{~N}[\mathrm{E}]+2.0 \mathrm{~N}[\mathrm{E}]$
b) $6.0 \mathrm{~m}[\mathrm{~W}]+3.0 \mathrm{~m}[\mathrm{E}]$
c) $7.0 \mathrm{~m} / \mathrm{s}[\mathrm{N}]+6.3 \mathrm{~m} / \mathrm{s}[\mathrm{S}]$
d) $9.2 \mathrm{~N}[\mathrm{E}]+7.4 \mathrm{~N}[\mathrm{~W}]+3.2 \mathrm{~N}[\mathrm{E}]$
9) Adding perpendicular vectors, express appropriate angles in your answer:
a)

c)

b)

d)

10) Sketch an appropriate answer for the following:
a)

b)

11) When subtracting vectors what should you do?

Physics 11

12) Subtract the following vectors:
a) $\xrightarrow{7.0 \mathrm{~m}}-\xrightarrow{3.0 \mathrm{~m}}$
c) $5.0 \mathrm{~m}[\mathrm{~N}]-12.0 \mathrm{~m}[\mathrm{E}]$
d) $4.0 \mathrm{n}[\mathrm{S}]-3.0 \mathrm{~N}[\mathrm{~S}]$

b) | $7.0 \mathrm{~m} / \mathrm{s}$ | $\left.\begin{array}{l}4.0 \mathrm{~m} / \mathrm{s}\end{array}\right)$ | |
| :--- | :--- | :--- |
| | | |

13) Sketch an appropriate resultant:
a) \longrightarrow
b)

14) Add the following vectors, you will have to use components for this...
a) 60 N at $40^{\circ} \mathrm{E}$ of N and 45 N at $12^{\circ} \mathrm{S}$ of E
b) $48 \mathrm{~m} / \mathrm{s}$ at $53^{\circ} \mathrm{N}$ of W and $25 \mathrm{~m} / \mathrm{s}$ at $80^{\circ} \mathrm{N}$ of E
c) 6.0 m at $16^{\circ} \mathrm{W}$ of S and 4.0 m due south
15) Subtract the vectors below:
a) $10 \mathrm{~m} / \mathrm{s}$ at $45^{\circ} \mathrm{E}$ of N minus $6.0 \mathrm{~m} / \mathrm{s}$ due west
b) 15 N at $30^{\circ} \mathrm{W}$ of N minus 8.0 N at $40^{\circ} \mathrm{S}$ of W
16) Vector applications:
a) A plane flies at $70 \mathrm{~m} / \mathrm{s}$ at $60^{\circ} \mathrm{N}$ of E and is blown by a wind of velocity $20 \mathrm{~m} / \mathrm{s}$ due north, find the ground speed.

Physics 11

b) A boat can achieve a velocity of $8.0 \mathrm{~m} / \mathrm{s}$ and heads due north across a 56 m wide river which flows west at $6.0 \mathrm{~m} / \mathrm{s}$.
i) find the velocity of the boat as viewed from shore
ii) how long does it take to cross the river?
iii) How far downstream is the boat when it reaches the far bank?
iv) What bearing should the boat make if it wants to arrive directly across the river?
v) What is the magnitude of the resultant in (iv) above?
17) An airplane with an airspeed of $420 \mathrm{~km} / \mathrm{h}$ is heading due north. If there is a wind blowing due east with a speed of $120 \mathrm{~km} / \mathrm{h}$, what is the direction of the plane relative to the ground?

Answers:

1) S: time, distance, speed, mass, temperature etc. V: displacement, velocity, acc., weight, force, V: mag. and dir., S: mag. only
2) $9.2 \mathrm{~m} @ 13^{\circ}$ [EofN], 3) $13 \mathrm{~N} @ 23^{\circ}$ [SofE], 4) $13.3 \mathrm{~m} / \mathrm{s} @ 28^{\circ}$ [SofE], 5) $55.4 \mathrm{~m} / \mathrm{s} @ 9^{\circ}$ [NofE] 6) $102 \mathrm{~m} / \mathrm{s} @ 49^{\circ}$ [SofE]

7a) x-comp $8.7 \mathrm{~m}[\mathrm{E}], y-c o m p 5.0 \mathrm{~m}[\mathrm{~N}] \quad 7 \mathrm{~b}) \mathrm{x}$-comp $14.1 \mathrm{~N}[\mathrm{~W}], y-c o m p 14.1 \mathrm{~N}[\mathrm{~N}]$
7c) $x=20 \mathrm{~m} / \mathrm{s}[\mathrm{W}], y=34.6 \mathrm{~m} / \mathrm{s}[\mathrm{S}] \quad 7 \mathrm{~d}) \mathrm{x}=4.4 \mathrm{kgm} / \mathrm{s}[\mathrm{W}], \mathrm{y}=14.3 \mathrm{kgm} / \mathrm{s}[\mathrm{S}]$
7e) $x=17 \mathrm{~m}[\mathrm{~W}], y=0 \quad 7 \mathrm{f}) \mathrm{x}=7.7 \mathrm{~N}[\mathrm{E}], \mathrm{y}=6.4 \mathrm{~N}[\mathrm{~S}]$
8a) $12 \mathrm{~N}[\mathrm{E}], 8 \mathrm{~b}) 3.0 \mathrm{~m} / \mathrm{s}[\mathrm{W}], 8 \mathrm{c}) 0.70$, $/ \mathrm{s}$ [N], $5.0 \mathrm{~N}[\mathrm{E}]$,
9a) 5.0 m at $53^{\circ} \mathrm{N}$ of E, 9 b$) 13 \mathrm{~N}$ at $67^{\circ} \mathrm{S}$ of W, 9 c$) 10 \mathrm{~m} / \mathrm{s}$ at $45^{\circ} \mathrm{N}$ of E 9 d$) 5.0 \mathrm{~m}$ at $53^{\circ} \mathrm{E}$ of N
10a)

10b) \longleftarrow 11) add the opposite
12a) $4.0 \mathrm{~m}[\mathrm{E}], 12 \mathrm{~b}) 8.1 \mathrm{~m}$ at $28^{\circ} \mathrm{E}$ of $\left.\mathrm{N}, 12 \mathrm{c}\right) 13 \mathrm{~m} / \mathrm{s}$ at $67^{\circ} \mathrm{W}$ of $\left.\mathrm{N}, 12 \mathrm{~d}\right) 5.0 \mathrm{~N}$ at $53^{\circ} \mathrm{S}$ of W
13a)
b)

14a) 90 N at $66^{\circ} \mathrm{E}$ of $\left.\mathrm{N}, 14 \mathrm{~b}\right) 67.5 \mathrm{~m} / \mathrm{s}$ at $69^{\circ} \mathrm{N}$ of W

14c) 9.9 m at $10^{\circ} \mathrm{W}$ of $\left.\mathrm{S} \quad 15 \mathrm{a}\right) 14.9 \mathrm{~m} / \mathrm{s}$ at $28^{\circ} \mathrm{N}$ of E 15b) 18.2 N at $86^{\circ} \mathrm{N}$ of W
16a) $88 \mathrm{~m} / \mathrm{s}$ at $67^{\circ} \mathrm{N}$ of E 16b)i) $10 \mathrm{~m} / \mathrm{s}$ at $37^{\circ} \mathrm{E}$ of N ii) 7.0 s iii) 42 m iv) $48.6^{\circ} \mathrm{W}$ of N v) $5.3 \mathrm{~m} / \mathrm{s}$
17) $16^{\circ}[\mathrm{E}$ of N$]$

