Power & Efficiency

Thursday, April 11, 2013

Power: the rate at which energy or work is used

$$p = F(d) \leq F.V$$

Ex A 1400 W microwave is used for 3 hours/day. How much energy is used in 30 days.

= 4536000005

= 126 Kw.H

Efficiency: the % at which a device converts input energy into desired Juseful output energy

ex: A mini lucomative engine of mass 120kg is able to pull a 230kg car up a hill of 3.0 high in 5.0. If the engine produces a total power of 7440w, what is the efficiency?

WEP A Quick Revi...

Inserted from: <file://D:\My Documents\My Files\Physics 12\06 Energy Momentum\WEP A Quick Review.doc>

PHYSICS 12

NAME:

Work, Energy, Power: A Quick Review

1. A 10 kg block initially at rest is pulled 13 m across a floor by a 50 N force.

If friction does 380 J of work over this distance, what is the block's final velocity?

- A. 7.3 m/s
- B. 8.7 m/s
- C. 11 m/s
- D. 14 m/s
- An electric motor outputs 1500 W of power in pulling a 70 kg crate of fish up a very slippery loading ramp at a constant speed. The ramp is inclined 31° to the horizontal. Determine the speed of the crate. (Ignore friction.)
 - A. 1.9 m/s
 - B. 2.1 m/s
 - C. 2.6 m/s
 - D. 4.2 m/s
- The graph below shows the force exerted by a rope in lifting a 2.0 kg mass a vertical distance of 10 m from the ground.

What is the final speed of the box at 10 m?

- A. 7.3 m/s
- B. 10 m/s
- C. 16 m/s
- D. 21 m/s

4. A 0.030 kg toy car is pushed back against a spring-based launcher as shown in Diagram 1.

Diagram 1

Diagram 2 shows a graph of the force required to compress the spring 0.090 m.

Diagram 2

- a) What is the work done in compressing the spring?
- b) Assuming no losses due to heat, what maximum speed is reached by the toy car when it is released?