Worksheet 7.1

1) A current of 3.60 A flows for 15.3 s through a conductor. Calculate the number of electrons that pass through a point in the conductor in this time. I= Q , Q=I·t=(3.6A)(15,38) = SS.080

2) How long would it take 2.0x10²⁰ electrons to pass through a point in a conductor if the current was 10.0 A?

$$Q = ne = (2.0 \times 10^{20})(1.6 \times 10^{19}c) = 32C, I = \frac{Q}{E}, E = \frac{32c}{104} = 3.2s$$
 (3.2s)

3) Calculate the current if a charge of 5.60 C passes through a point in a conductor in 15.4 s. (0.364 A) $\int_{-\infty}^{\infty} \frac{1}{1} = \frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \int_{-\infty}^$

the conductor of 12.0 Ω ? $V = T \cdot R = 96 \text{ V}$ 5) What is the heat produced in a conductor in 25.0 s if there is a current of 11.0 A and a resistance of 7.20 Ω ?

$$E = P.t = (I^2R).t = (11^2)(7.20)(25s) = 2/800J$$
 (21800J)

6) 150 J of heat are produced in a conductor in 5.50 s. If the current through the conductor is 10.0 A, what is the resistance of the conductor? $E = P \cdot \ell = T \cdot R \cdot \epsilon$ (0.273Ω) R=, 27352

7) What is the current through a 400 W electric appliance when it is connected to a 120 V power line?

What is the current through a 450 W electric appliance with the second (3.33 A).

$$P = V \cdot T \qquad I = \frac{V}{V} = \frac{400 \text{ W}}{120 \text{ V}} = 3.3 \text{ A}$$

8) a. When an electric appliance is connected to a 120 V power line, there is a current through the appliance of

 (6.56Ω) 18.3 A. What is its resistance? $\sqrt{-1}R$, $R = \frac{V}{I} = \frac{120V}{18.3A} = 6.6$ b. What is the average amount of energy given to each electron by the power line?

 $(1.92x10^{-17} J)$

 $E=P.t=(V.I)t=V(Q)t=V.Q=(120V)(1.6\times0^{-19}C)$ 9) a. What potential difference is required across an electrical appliance to produce a current of 20.0 A when (120 V)there is a resistance of 6.00 Ω ?

b. How many electrons pass through the appliance every minute? -4 (7.5×10^{21}) Q=It=ne N= It

10) A student designed an experiment in order to measure the current through a resistor at different voltages. Given the following data:

a. Draw a graph showing the relationship between current and voltage

Voltage (V)	Current (i)
3.0	0.151
6.0	0.310
9.0	0.448
12.0	0.511
15.0	0.750

.1)	
'''	
(6_	
	1
	1
	-
<u> </u>	-
2 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	-
nce of the resistor?	(

5/ope = 12-70 15-9 6 =19.95 ~

(20.0 +/- 0.5 Ω) Joァ

b) Using the graph, what is the resistan